 STYLEREF ZA
21
Error! No text of specified style in document.

3GPP TSG-WG5 Meeting #22
Tdoc (
N5-030091

Bangkok, Thailand, 27 Jan – 31 Jan 2003
CR-Form-v7

CHANGE REQUEST

(

29.198-3
CR
CRNum
(

rev
-
(

Current version:
5.1.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

UICC apps(

ME

Radio Access Network

Core Network
X

Title:
(

Introduction of support to inform applications about new SCSs and their level of Backward compatibility

Source:
(

Ericsson

Work item code:
(

OSA-3

Date: (

01/30/2003

Category:
(

B

Release: (

Rel-6

Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

Reason for change:
(

Fullfil the requirement in 22.127 on adding support in OSA to inform applications about new SCSs where an application can migrate to.

Summary of change:
(

New generic Service Properties and a new event is added to be able to report applications that are currently using a certain SCS that a new SCS to which the applications can migrate to has become available.

Consequences if
(

not approved:
Mismatch between requirements and the actual API.

Clauses affected:
(

8.3.5

Y
N

Other specs
(

N
 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.3.5 Service Registration Interface Classes
Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with the Framework. Services are registered against a particular service type. Therefore service types are created first, and then services corresponding to those types are accepted from the Service Suppliers for registration in the framework. The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property values" for the service. The service discovery functionality described in the previous clause enables the service supplier to obtain a list of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative applications. They are described below. Note that these methods cannot be invoked until the authentication methods have been invoked successfully.

8.3.5.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

8.3.5.1.1 Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to the Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is registered in the Framework. When the service is not registered because the ServiceType is 'unavailable', a P_SERVICE_TYPE_UNAVAILABLE is raised. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.
If a service is registered with the property P_COMPATIBLE_WITH_SERVICE in its servicePropertyList, then the Framework shall notify all applications using instances of services identified by this property, using the P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE event, if they have registered for such a notification. If an incorrect combination of properties is included in conjunction with P_COMPATIBLE_WITH_SERVICE, a P_MISSING_MANDATORY_PROPERTY exception is raised.
Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioural, non-functional and non-computational aspects of the service. Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
a. mandatory - a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. Examples of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
Returns

TpServiceID

Raises

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE
8.3.5.1.2 Method announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle manager is instantiated at a particular interface. This method informs the framework of the availability of "service instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager" instance per service instance. Each service implements the IpServiceInstanceLifecycleManager interface. The IpServiceInstanceLifecycleManager interface supports a method called the createServiceManager(application: in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef. When the service agreement is signed for some serviceID (using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID, P_INVALID_INTERFACE_TYPE
8.3.5.1.3 Method unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework. The service is identified by the "service-ID" which was originally returned by the Framework in response to the registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
8.3.5.1.4 Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the "service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for example), and each getting a different serviceID assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the service , and the properties that describe this service.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
Returns

TpServiceDescription

Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
8.3.5.1.5 Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the service ID is still associated with it. Applications currently using the service can continue to use the service but no new applications should be able to start using the service. Also, all unused service tokens relating to the service will be expired. This will prevent anyone who has already performed a selectService() but not yet performed the signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
8.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

8.4.5 Service Registration State Transition Diagrams
8.4.5.1 State Transition Diagrams for IpFwServiceRegistration

[image: image1.wmf]SCF

Registered

registerService

SCF

Announced

describeService

unannounceService

announceServiceAvailability

unregisterService

Figure : State Transition Diagram for IpFwServiceRegistration

8.4.5.1.1 SCF Registered State

This is the state entered when a Service Capability Server (SCS) registers its SCF in the Framework, by informing it of the existence of an SCF characterised by a service type and a set of service properties. As a result the Framework associates a service ID to this SCF, that will be used to identify it by both sides.
An SCF may be unregistered, the service ID then being no longer associated with the SCF.
8.4.5.1.2 SCF Announced State

This is the state entered when the existence of the SCF has been announced, thus making it available for discovery by applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it is no longer available for discovery.
8.4.6 Service Instance Lifecycle Manager State Transition Diagrams
There are no State Transition Diagrams defined for Service Instance Lifecycle Manager
8.4.7 Service Discovery State Transition Diagrams
There are no State Transition Diagrams defined for Service Discovery
8.4.8 Integrity Management State Transition Diagrams
8.4.8.1 State Transition Diagrams for IpFwLoadManager

[image: image2.wmf]Idle

Notification

Suspended

Active

All States

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

destroyLoadLevelNotification

queryLoadReq

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

createLoadLevelNotification

destroyLoadLevelNotification

suspendNotification

[all notifications suspended]

resumeNotification

queryLoadReq

"load change" ^loadLevelNotification

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

Figure : State Transition Diagram for IpFwLoadManager

8.4.8.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.
8.4.8.1.2 Notification Suspended State

Due to e.g. a temporary load condition, the service has requested the LoadManager to suspend sending the load level notification information.
8.4.8.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpFwLoadManager. The load manager can now request the service to supply load statistics information (by invoking querySvcLoadReq()). Furthermore the LoadManager can request the service to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the service side of interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
8.4.9 Event Notification State Transition Diagrams
There are no State Transition Diagrams defined for Event Notification
9 Service Properties

9.3 Service Property Types

The service type defines which properties the supplier of an SCF supplier shall provide when he registers an SCF.

At Service Registration the properties of a type shall be interpreted as the set of values that can be supported by the service. If a service type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property value of {"true", "false"}. This means that the SCS is able to support Service instances where this property is used or allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement. The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thus lead to a sub-set of the service property values. When the correct SCF is instantiated during the discovery and selection procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE:
This is achieved through the createServiceManager() operation in the Service Instance Lifecycle Manager interface.

All property values are represented by an array of strings. The following table shows all supported service property types.

Service Property type name
Description
Example value (array of strings)
Interpretation of example value

BOOLEAN_SET
set of Booleans
{"FALSE"}
The set of Booleans consisting of the Boolean "false".

INTEGER_SET
set of integers
{"1", "2", "5", "7"}
The set of integers consisting of the integers 1, 2, 5 and 7.

STRING_SET
set of strings
{"Sophia", "Rijen"}
The set of strings consisting of the string “Sophia" and the string "Rijen"

ADDRESSRANGE_SET
set of address ranges
{"123??*", "*.ericsson.se"}
The set of address ranges consisting of ranges 123??* and *.ericsson.se.

INTEGER_INTERVAL
interval of integers
{"5", "100"}
The integers that are between or equal to 5 and 100.

STRING_INTERVAL
interval of strings
{"Rijen", "Sophia"}
The strings that are between or equal to the strings "Rijen" and "Sophia", in lexicographical order.

INTEGER_INTEGER_MAP
map from integers to integers
{"1", "10", "2", "20", "3", "30"}
The map that maps 1 to 10, 2 to 20 and 3 to 30.

The bounds of the string interval and the integer interval types may hold the reserved value "UNBOUNDED". If the left bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is the smallest value supported by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper bound of the interval is the largest value supported by the type.

When an SCF is registerd by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an empty set. When a service is discovered by an application, this application shall specify either {TRUE} or {FALSE} as value for service properties of type BOOLEAN_SET.
9.4 General Service Properties

Each service instance has the following general properties:

· Service Name
· Service Version
· Service ID
· Service Description
· Product Name
· Product Version
· Supported Interfaces
· Operation Set
· Compatible Service

· Backward Compatibility Level

· Migration Required

· Data migrated

· Migration Date and Time
The following sections describe these general service properties in more detail. The values for the mode are defined in the type TpServiceTypePropertyMode.

9.4.5 Service Name

Property
Type
Mode
Description

P_SERVICE_NAME
STRING_SET
MANDATORY_READONLY
This property contains the name of the service, e.g. “UserLocation”, “UserLocationCamel”, “UserLocationEmergency” or “UserStatus”.

9.4.6 Service Version

Property
Type
Mode
Description

P_SERVICE_VERSION
STRING_SET
MANDATORY
This property contains the version of the APIs, to which the service is compliant. It is a set of strings as specified in the TpVersion type.

9.4.7 Service ID

Property
Type
Mode
Description

P_SERVICE_ID
STRING_INTERVAL
READONLY
This property uniquely identifies a specific service. Note that the Framework generates this property value when the Service Supplier registers the service. This property should not be confused with the serviceInstanceID generated by the Framework when a Client Application signs a Service Agreement to obtain the Service Manager

9.4.8 Service Description

Property
Type
Mode
Description

P_SERVICE_DESCRIPTION
STRING_SET
MANDATORY_READONLY
This property contains a textual description of the service. It should not be interpreted as a description of a Service Instance (as identified by a serviceInstanceID generated by the Framework when a Client Application signs a Service Agreement to obtain the Service Manager).

9.4.9 Product Name

Property
Type
Mode
Description

P_PRODUCT_NAME
STRING_SET
READONLY
This property contains the name of the product that provides the service, e.g. “Find It”, “Locate.com”.

9.4.10 Product Version

Property
Type
Mode
Description

P_PRODUCT_VERSION
STRING_SET
READONLY
This property contains the version of the product that provides the service, e.g. “3.1.11”.

9.4.11 <<deprecated>> Supported Interfaces

This property contains a list of strings with interface names that the service supports, e.g. “IpUserLocation”, “IpUserStatus”. This property is deprecated and will be removed in a future version of the specification.

9.4.12 Operation Set

Property
Type
Mode
Description

P_OPERATION_SET
STRING_SET
MANDATORY
Specifies set of the operations the SCS supports.

The notation to be used is : {“Interface1.operation1”,”Interface1.operation2”, “Interface2.operation1”}, e.g.:

{“IpCall.createCall”,”IpCall.routeReq”}.

10.2.10 Compatible Service

Property
Type
Mode
Description

P_COMPATIBLE_WITH_SERVICE
STRING_SET
READONLY
Specifies the Set of Services, identified by their ServiceIDs, with which this new service is compatible.

This property should at least be accompanied with the properties P_BACKWARD_COMPATIBILITY_LEVEL, P_MIGRATION_REQUIRED.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties like Migration Required, Data Migrated, etc. For all these properties the order of the Services shall be identical.

9.4.13 Backward Compatibility Level

Property
Type
Mode
Description

P_BACKWARD_COMPATIBILITY_LEVEL
BOOLEAN_SET
READONLY
Specifies if the new service is completely backwards compatible with each service identified in the P_COMPATIBLE_WITH_SERVICE property:

Value = TRUE: Service is completely backwards compatible

Value = FALSE: SCS is not completely backwards compatible.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE property.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.
For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

10.2.9 Migration Required

Property
Type
Mode
Description

P_MIGRATION_REQUIRED
BOOLEAN_SET
READONLY
Specifies if the new service is replacing the service identified in the P_COMPATIBLE_WITH_SERVICE property:

Value = TRUE: new service is replacing the existing one – migration is required before the date/time indicated in P_MIGRATION_DATE_AND_TIME property.

Value = FALSE: new service is not replacing the existing one – migration not required, the existing service is retained.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE property. If the value set of P_MIGRATION_REQUIRED contains TRUE, P_DATA_MIGRATED and P_MIGRATION_DATE_AND_TIME properties shall also to be present.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

9.4.14 Data Migrated

Property
Type
Mode
Description

P_DATA_MIGRATED
BOOLEAN_SET
READONLY
Indicates if the data (e.g. notifications) from the existing service identified in the P_COMPATIBLE_WITH_SERVICE property is also available in this Service.

Value = TRUE: all data is migrated

Value = FALSE: no data is migrated

This property requires the presence of P_COMPATIBLE_WITH_SERVICE and the P_MIGRATION_REQUIRED properties.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

9.4.15 Migration Date And Time

Property
Type
Mode
Description

P_MIGRATION_DATE_AND_TIME
STRING_SET
READONLY
This property contains the date and time, in the format described in TpDateAndTime, by which point applications shall have migrated from existing services to this new service.

Migration to the new service requires the application to terminate the existing service agreement, and sign a new one.

Failure to do this by the migration date and time indicated in this property may result in the service agreement being terminated by the Framework, since the service supplier may choose to unregister the service following this date and time.

Only one value of TpDateAndTime is permitted to be present in this property at service registration.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE, P_MIGRATION_REQUIRED and P_DATA_MIGRATED properties.
Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical. For those services for which migration is not required (P_MIGRATION_REQUIRED set to FALSE), the corresponding value of this property shall be ignored.

10 Data Definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.

The general format of a data definition specification is the following:

Data type, that shows the name of the data type;

Description, that describes the data type;

Tabular specification, that specifies the data types and values of the data type;

Example, if relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definitions which may be found in 3GPP TS 29.198-2.

10.3 Common Framework Data Definitions

10.3.5 TpClientAppID

This is an identifier for the client application. It is used to identify the client to the Framework. This data type is identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this string shall be unique for each OSA API implementation (or unique for a network operator’s domain). This unique identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

10.3.6 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

10.3.7 TpDomainID

Defines the Tagged Choice of Data Elements that specify either the Framework or the type of entity attempting to access the Framework.

Tag Element Type

TpDomainIDType

Tag Element Value
Choice Element Type
Choice Element Name

P_FW
TpFwID
FwID

P_CLIENT_APPLICATION
TpClientAppID
ClientAppID

P_ENT_OP
TpEntOpID
EntOpID

P_SERVICE_INSTANCE
TpServiceInstanceID
ServiceID (See Note)

P_SERVICE_SUPPLIER
TpServiceSupplierID
ServiceSupplierID

Note: The Choice Element Name ServiceID of TpDomainID refers to a service instance.

10.3.8 TpDomainIDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name
Value
Description

P_FW
0
The Framework

P_CLIENT_APPLICATION
1
A client application

P_ENT_OP
2
An enterprise operator

P_SERVICE_INSTANCE
3
A service instance

P_SERVICE_SUPPLIER
4
A service supplier

10.3.9 TpEntOpID

This data type is identical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service Capability Feature (SCF).

10.3.10 TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

10.3.11 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

10.3.12 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data type consisting of the following {name,value} pair:

Sequence Element

Name
Sequence Element

Type

PropertyName
TpPropertyName

PropertyValue
TpPropertyValue

10.3.13 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

10.3.14 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOpID.

10.3.15 TpFwID

This data type is identical to TpString and identifies the Framework.

10.3.16 TpService

This data type is a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

ServiceID
TpServiceID

ServiceDescription
TpServiceDescription
This field contains the description of the service

10.3.17 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

10.3.18 TpServiceDescription

This data type is a Sequence of Data Elements which describes a registered SCF. It is a structured data type which consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

ServiceTypeName
TpServiceTypeName

ServicePropertyList
TpServicePropertyList

10.3.19 TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF interface. The string is automatically generated by the Framework.

10.3.20 TpServiceIDList

This data type defines a Numbered Set of Data Elements of type TpServiceID.

10.3.21 TpServiceInstanceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a registered SCF interface. The string is automatically generated by the Framework

10.3.22 TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.
It is similar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service property’s name and mode, but also defines the list of values assigned to it.

Sequence Element

Name
Sequence Element

Type
Documentation

ServicePropertyName
TpServicePropertyName

ServiceTypePropertyMode
TpServiceTypePropertyMode

ServicePropertyTypeName
TpServicePropertyTypeName

10.3.23 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

10.3.24 TpServiceTypePropertyMode

This type defines SCF property modes.

Name
Value
Documentation

NORMAL
0
The value of the corresponding SCF property type may optionally be provided

MANDATORY
1
The value of the corresponding SCF property type shall be provided at service registration time

READONLY
2
The value of the corresponding SCF property type is optional, but once given a value it can not be modified/restricted by a service level agreement

MANDATORY_READONLY
3
The value of the corresponding SCF property type shall be provided but can not subsequently be modified/restricted by a service level agreement.

10.3.25 TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property type name. Valid service property type names are detailed in 10.1.

10.3.26 TpServicePropertyName

This data type is identical to TpString. It defines a valid SCF property name. The valid service property names are detailed in 10.2 and in the SCF data definitions.

10.3.27 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

10.3.28 TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property.

10.3.29 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue

10.3.30 TpServiceProperty

This data type is a Sequence of Data Elements which describes an “SCF property”. It is a structured data type which consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

ServicePropertyName
TpServicePropertyName

ServicePropertyValueList
TpServicePropertyValueList

10.3.31 TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

10.3.32 TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the Framework. This data type is identical to TpString.

10.3.33 TpServiceTypeDescription

This data type is a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

ServiceTypePropertyList
TpServiceTypePropertyList
a sequence of property name and property mode tuples associated with the SCF type

ServiceTypeNameList
TpServiceTypeNameList
the names of the super types of the associated SCF type

AvailableOrUnavailable
TpBoolean
an indication whether the SCF type is available (true) or unavailable (false)

10.3.34 TpServiceTypeName

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined.

Character String Value
Description

NULL
An empty (NULL) string indicates no SCF name

P_GENERIC_CALL_CONTROL
The name of the Generic Call Control SCF

P_MULTI_PARTY_CALL_CONTROL
The name of the MultiParty Call Control SCF

P_MULTI_MEDIA_CALL_CONTROL
The name of the MultiMedia Call Control SCF

P_CONFERENCE_CALL_CONTROL
The name of the Conference Call Control SCF

P_USER_INTERACTION
The name of the User Interaction SCFs

P_TERMINAL_CAPABILITIES
The name of the Terminal Capabilities SCF

P_USER_LOCATION
The name of the User Location SCF

P_USER_LOCATION_CAMEL
The name of the Network User Location SCF

P_USER_LOCATION_EMERGENCY
The name of the User Location Emergency SCF

P_USER_STATUS
The name of the User Status SCF

P_DATA_SESSION_CONTROL
The name of the Data Session Control SCF

P_GENERIC_MESSAGING
The name of the Generic Messaging SCF

P_CONNECTIVITY_MANAGER
The name of the Connectivity Manager SCF

P_CHARGING
The name of the Charging SCF

P_ACCOUNT_MANAGEMENT
The name of the Account Management SCF

P_POLICY_MANAGEMENT
The name of the Policy Management SCF

P_PAM_PRESENCE_AND_AVAILABILITY
The name of PAM presentity SCF

P_PAM_EVENT_MANAGEMENT
The name of PAM watcher SCF

P_PAM_PROVISIONING
The name of PAM provisioning SCF

10.3.35 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

10.3.36 TpSubjectType

Defines the subject of a query/notification request/result.

Name
Value
Description

P_SUBJECT_UNDEFINED
0
The subject is neither the framework nor the client application

P_SUBJECT_CLIENT_APP
1
The subject is the client application

P_SUBJECT_FW
2
The subject is the framework

10.4 Event Notification Data Definitions

10.4.5 TpFwEventName

Defines the name of event being notified.

Name
Value
Description

P_EVENT_FW_NAME_UNDEFINED
0
Undefined

P_EVENT_FW_SERVICE_AVAILABLE
1
Notification of SCS(s) available

P_EVENT_FW_SERVICE_UNAVAILABLE
2
Notification of SCS(s) becoming unavailable

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE
3
Notification of a backwards compatible SCS becoming available, to which the application can migrate.

10.4.6 TpFwEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated.

Tag Element Type

TpFwEventName

Tag Element Value
Choice Element Type
Choice Element Name

P_EVENT_FW_NAME_UNDEFINED
TpString
EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE
TpServiceTypeNameList
ServiceTypeNameList

P_EVENT_FW_SERVICE_UNAVAILABLE
TpServiceTypeNameList
UnavailableServiceTypeNameList

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE
TpServiceTypeNameList
CompatibleServiceTypeNameList

10.4.7 TpFwEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an event notification.

Tag Element Type

TpFwEventName

Tag Element Value
Choice Element Type
Choice Element Name

P_EVENT_FW_NAME_UNDEFINED
TpString
EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE
TpServiceIDList
ServiceIDList

P_EVENT_FW_SERVICE_UNAVAILABLE
TpServiceIDList
UnavailableServiceIDList

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE
TpFWMigrationServiceAvailableInfo
MigrationServiceAvailableList

10.2.1 TpFwMigrationServiceAvailableInfo

Defines the information to be supplied when an SCS becomes available

Sequence Element

Name
Sequence Element

Type
Documentation

ServiceType
TpServiceTypeName
Type of SCS that has become available

ServiceID
TpServiceID
ID of the SCS that has become available

CompatibleServiceID
TpServiceID
ID of the SCS with which this new SCS is compatible with.

BackwardCompatibilityLevel
TpBoolean
Specifies if the new SCS is completely backwards compatible with the currently used SCS.

Value = TRUE: SCS is completley backwards compatible

Value = FALSE: SCS is not completely backwards compatible. Contact the Framework operator for more information.on how to migrate.

MigrationRequired
TpBoolean
Specifies if the new SCS is replacing the existing SCS

Value = TRUE: new SCS is replacing the existing one - migration is required before the date/time indicated in MigrationDateAndTime field

Value = FALSE: new SCS is not replacing the existing one, but is provided in addition.

All migration to the new SCS, whether required or not, shall involve the application terminating the existing service agreement and signing a new one.

DataMigrated
TpBoolean
Indicates whether all the data the application set in the previous SCS (e.g. notifications) is also available in the new SCS.

Value = FALSE : the new SCS has not obtained all data (e.g. notifications) related to the old SCS and the application needs to reset all the previous data.

Value = TRUE: the new SCS has obtained data (e.g. notifications) related to the old SCS, the application can use the new SCS without resetting data.

MigrationDataAndTime
TpDataAndTime
Indicates the date and time before which applications shall have migrated from existing the existing SCS to this new SCS.

Migration to the new SCS requires the application to terminate the existing service agreement, and sign a new one.

Failure to do this by the migration date and time indicated in this field may result in the service agreement being terminated by the Framework, since the service supplier may choose to unregister the service following this date and time.
The value of this parameter, if present, shall be ignored if MigrationRequired is set to FALSE

MigrationAdditionalInfo
TpMigrationAdditionalInfoSet
Contains additional migration information. This is initially provided to permit addition of information in later releases without impacting backwards compatibiltiy.

11.2.1 TpMigrationAdditionalInfo

Defines the Tagged Choice of Data Elements that specify additional migration-related information.

Tag Element Type

TpMigrationAdditionalInfoType

Tag Element Value
Choice Element Type
Choice Element Name

P_MIGRATION_INFO_UNDEFINED
NULL
MigrationInfoUndefined

11.2.2 TpMigrationAdditionalInfoType

Defines the type of migration-related additional information.

Name
Value
Description

P_MIGRATION_INFO_UNDEFINED
0
Undefined

11.2.3 TpMigrationAdditionalInfoSet

Defines a Numbered Set of Data Elements of TpMigrationAdditionalInfo.
10.5 Trust and Security Management Data Definitions

10.5.5 TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define their own access interfaces to satisfy client requirements for different types of access. These can be selected using the TpAccessType, but should be preceded by the string "SP_". The following value is defined:

String Value
Description

P_OSA_ACCESS
Access using the OSA Access Interfaces: IpAccess and IpClientAccess

10.5.6 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined:

String Value
Description

P_OSA_AUTHENTICATION
Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and IpClientAPILevelAuthentication

P_AUTHENTICATION
Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

10.5.7 TpEncryptionCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the encryption capabilities that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The following values are defined.

String Value
Description

NULL
An empty (NULL) string indicates no client capabilities.

P_DES_56
A simple transfer of secret information that is shared between the client application and the Framework with protection against interception on the link provided by the DES algorithm with a 56-bit shared secret key.

P_DES_128
A simple transfer of secret information that is shared between the client entity and the Framework with protection against interception on the link provided by the DES algorithm with a 128-bit shared secret key.

P_RSA_512
A public-key cryptography system providing authentication without prior exchange of secrets using 512-bit keys.

P_RSA_1024
A public-key cryptography system providing authentication without prior exchange of secrets using 1024-bit keys.

10.5.8 TpEncryptionCapabilityList

This data type is identical to a TpString. It is a string of multiple TpEncryptionCapability concatenated using a comma (,)as the separation character.

10.5.9 TpEndAccessProperties

This data type is of type TpPropertyList. It identifies the actions that the Framework should perform when an application or service capability feature entity ends its access session (e.g. existing service capability or application sessions may be stopped, or left running).

10.5.10 TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain identifier, and a reference to the authentication interface of the domain

Sequence Element

Name
Sequence Element

Type
Description

DomainID
TpDomainID
Identifies the domain for authentication. This identifier is assigned to the domain during the initial contractual agreements, and is valid during the lifetime of the contract.

AuthInterface
IpInterfaceRef
Identifies the authentication interface of the specific entity. This data element has the same lifetime as the domain authentication process, i.e. in principle a new interface reference can be provided each time a domain intends to access another.

10.5.11 TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used, but should be preceded by the string "SP_". The following values are defined.

Character String Value
Description

P_DISCOVERY
The name for the Discovery interface.

P_EVENT_NOTIFICATION
The name for the Event Notification interface.

P_OAM
The name for the OA&M interface.

P_LOAD_MANAGER
The name for the Load Manager interface.

P_FAULT_MANAGER
The name for the Fault Manager interface.

P_HEARTBEAT_MANAGEMENT
The name for the Heartbeat Management interface.

P_SERVICE_AGREEMENT_MANAGEMENT
The name of the Service Agreement Management interface.

P_REGISTRATION
The name for the Service Registration interface.

P_ENT_OP_ACCOUNT_MANAGEMENT
The name for the Service Subscription: Enterprise Operator Account Management interface.

P_ENT_OP_ACCOUNT_INFO_QUERY
The name for the Service Subscription: Enterprise Operator Account Information Query interface.

P_SVC_CONTRACT_MANAGEMENT
The name for the Service Subscription: Service Contract Management interface.

P_SVC_CONTRACT_INFO_QUERY
The name for the Service Subscription: Service Contract Information Query interface.

P_CLIENT_APP_MANAGEMENT
The name for the Service Subscription: Client Application Management interface.

P_CLIENT_APP_INFO_QUERY
The name for the Service Subscription: Client Application Information Query interface.

P_SVC_PROFILE_MANAGEMENT
The name for the Service Subscription: Service Profile Management interface.

P_SVC_PROFILE_INFO_QUERY
The name for the Service Subscription: Service Profile Information Query interface.

10.5.12 TpInterfaceNameList

This data type defines a Numbered Set of Data Elements of type TpInterfaceName.

10.5.13 TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the Framework, which can be signed as part of a service agreement. This will contain Network operator specific information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client or Framework invokes the endAccess method on the other's corresponding access interface.

10.5.14 TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a reference to the SCF manager interface of the SCF.

Sequence Element

Name
Sequence Element

Type

DigitalSignature
TpOctetSet

ServiceMgrInterface
IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

10.5.15 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined.

String Value
Description

NULL
An empty (NULL) string indicates no signing algorithm is required

P_MD5_RSA_512
MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit modulus. The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

P_MD5_RSA_1024
MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public- key cryptography system using a 1024-bit modulus. .The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

P_RSASSA_PKCS1_v1_5_SHA1_1024
SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. RSA is then used to generate the signature value, following the process defined in section 8 of RFC 2437 and format defined in section 9.2.1 of RFC 2437. The RSA private/public key pair is using a 1024-bit modulus.

P_SHA1_DSA
SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. DSA is then used to generate the signature value. The signature generation follows the process and format defined in section 7.2.2 of RFC 2459.

10.5.16 TpSigningAlgorithmCapabilityList

This data type is identical to a TpString. It is a string of multiple TpSigningAlgorithm concatenated using a comma (,)as the separation character.

10.5.17 TpAuthMechanism

This data type is identical to a TpString. It identifies an authentication mechanism to be used for API Level Authentication. The following values are defined:

String Value
Description

P_OSA_MD5
Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to generate a response based on a shared secret and a challenge received via authenticate() method. The capability to use this algorithm is required to be supported when using CHAP (RFC 1994) but its use is not recommended.

P_OSA_HMAC_SHA1_96
Authentication is based on the use of HMAC-SHA1 (RFC 2404) hashing algorithm to generate a response based on a shared secret and a challenge received via authenticate() method.

P_OSA_HMAC_MD5_96
Authentication is based on the use of HMAC-MD5 (RFC 2403) hashing algorithm to generate a response based on a shared secret and a challenge received via authenticate() method.

10.5.18 TpAuthMechanismList

This data type is identical to a TpString. It is a string of multiple TpAuthMechanism concatenated using a comma (,)as the separation character.

10.6 Integrity Management Data Definitions

10.6.5 TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are “Available” or “Unavailable”.

10.6.6 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element

Name
Sequence Element

Type

Period
TpTimeInterval

FaultStatsSet
TpFaultStatsSet

10.6.7 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element

Name
Sequence Element

Type
Description

Fault
TpInterfaceFault

Occurrences
TpInt32
The number of separate instances of this fault

MaxDuration
TpInt32
The number of seconds duration of the longest fault

TotalDuration
TpInt32
The cumulative duration (all occurrences)

NumberOfClientsAffected
TpInt32
The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is the number of clients informed of the fault by the Framework.

10.6.8 TpFaultStatisticsError

Defines the error code associated with a failed attempt to retrieve any fault statistics information.

Name
Value
Description

P_FAULT_INFO_ERROR_UNDEFINED
0
Undefined error

P_FAULT_INFO_UNAVAILABLE
1
Fault statistics unavailable

10.6.9 TpFaultStatsSet
This data type defines a Numbered Set of Data Elements of type TpFaultStats
10.6.10 TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

10.6.11 TpInterfaceFault

Defines the cause of the interface fault detected.

Name
Value
Description

INTERFACE_FAULT_UNDEFINED
0
Undefined

INTERFACE_FAULT_LOCAL_FAILURE
1
A fault in the local API software or hardware has been detected

INTERFACE_FAULT_GATEWAY_FAILURE
2
A fault in the gateway API software or hardware has been detected

INTERFACE_FAULT_PROTOCOL_ERROR
3
An error in the protocol used on the client-gateway link has been detected

10.6.12 TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

Name
Value
Description

SERVICE_UNAVAILABLE_UNDEFINED
0
Undefined

SERVICE_UNAVAILABLE_LOCAL_FAILURE
1
The Local API software or hardware has failed

SERVICE_UNAVAILABLE_GATEWAY_FAILURE
2
The gateway API software or hardware has failed

SERVICE_UNAVAILABLE_OVERLOADED
3
The SCF is fully overloaded

SERVICE_UNAVAILABLE_CLOSED
4
The SCF has closed itself (e.g. to protect from fraud or malicious attack)

10.6.13 TpFwUnavailReason

Defines the reason why the Framework is unavailable.

Name
Value
Description

FW_UNAVAILABLE_UNDEFINED
0
Undefined

FW_UNAVAILABLE_LOCAL_FAILURE
1
The Local API software or hardware has failed

FW_UNAVAILABLE_GATEWAY_FAILURE
2
The gateway API software or hardware has failed

FW_UNAVAILABLE_OVERLOADED
3
The Framework is fully overloaded

FW_UNAVAILABLE_CLOSED
4
The Framework has closed itself (e.g. to protect from fraud or malicious attack)

FW_UNAVAILABLE_PROTOCOL_FAILURE
5
The protocol used on the client-gateway link has failed

10.6.14 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name
Value
Description

LOAD_LEVEL_NORMAL
0
Normal load

LOAD_LEVEL_OVERLOAD
1
Overload

LOAD_LEVEL_SEVERE_OVERLOAD
2
Severe Overload

10.6.15 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is application and SCF dependent, so is their relationship with load level.

Sequence Element

Name
Sequence Element

Type

LoadThreshold
TpFloat

10.6.16 TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element

Name
Sequence Element

Type

LoadLevel
TpLoadLevel

LoadThreshold
TpLoadThreshold

10.6.17 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name
Sequence Element Type

LoadPolicy
TpString

10.6.18 TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e. Framework, service or application) at a specific date and time.

Sequence Element Name
Sequence Element Type

LoadStatisticEntityID
TpLoadStatisticEntityID

TimeStamp
TpDateAndTime

LoadStatisticInfo
TpLoadStatisticInfo

10.6.19 TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpLoadStatistic.

10.6.20 TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information

Sequence Element Name
Sequence Element Type

LoadValue (see Note)
TpFloat

LoadLevel
TpLoadLevel

NOTE:
LoadValue is expressed as a percentage.

10.6.21 TpLoadStatisticEntityID

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or Framework) providing load statistics.

Tag Element Type

TpLoadStatisticEntityType

Tag Element Value
Choice Element Type
Choice Element Name

P_LOAD_STATISTICS_FW_TYPE
TpFwID
FrameworkID

P_LOAD_STATISTICS_SVC_TYPE
TpServiceID
ServiceID

P_LOAD_STATISTICS_APP_TYPE
TpClientAppID
ClientAppID

10.6.22 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Name
Value
Description

P_LOAD_STATISTICS_FW_TYPE
0
Framework-type load statistics

P_LOAD_STATISTICS_SVC_TYPE
1
Service-type load statistics

P_LOAD_STATISTICS_APP_TYPE
2
Application-type load statistics

10.6.23 TpLoadStatisticInfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or invalid).

Tag Element Type

TpLoadStatisticInfoType

Tag Element Value
Choice Element Type
Choice Element Name

P_LOAD_STATISTICS_VALID
TpLoadStatisticData
LoadStatisticData

P_LOAD_STATISTICS_INVALID
TpLoadStatisticError
LoadStatisticError

10.6.24 TpLoadStatisticInfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name
Value
Description

P_LOAD_STATISTICS_VALID
0
Valid load statistics

P_LOAD_STATISTICS_INVALID
1
Invalid load statistics

10.6.25 TpLoadStatisticError

Defines the error code associated with a failed attempt to retrieve any load statistics information.

Name
Value
Description

P_LOAD_INFO_ERROR_UNDEFINED
0
Undefined error

P_LOAD_INFO_UNAVAILABLE
1
Load statistics unavailable

10.7 Service Subscription Data Definitions

10.7.5 TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

10.7.6 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

10.7.7 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data type consisting of the following {name,value} pair:

Sequence Element

Name
Sequence Element

Type

PropertyName
TpPropertyName

PropertyValue
TpPropertyValue

10.7.8 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

10.7.9 TpEntOpProperties

This data type is of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g. name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

10.7.10 TpEntOp

This data type is a Sequence of Data Elements which describes an enterprise operator. It is a structured data type, consisting of a unique “enterprise operator ID” and a list of “enterprise operator properties”, as follows:

Sequence Element

Name
Sequence Element

Type

EntOpID
TpEntOpID

EntOpProperties
TpEntOpProperties

10.7.11 TpServiceContractID

This data type is identical to TpString. It uniquely identifies the contract, between an enterprise operator and the Framework, for the use of an OSAservice by the enterprise.

10.7.12 TpServiceContractIDList

This data type defines a Numbered List of Data Elements of type TpServiceContractID.

10.7.13 TpPersonName

This data type is identical to TpString. It is the name of a generic “person”.

10.7.14 TpPostalAddress

This data type is identical to TpString. It is the mailing address of a generic “person”.

10.7.15 TpTelephoneNumber

This data type is identical to TpString. It is the telephone number of a generic “person”.

10.7.16 TpEmail

This data type is identical to TpString. It is the email address of a generic “person”.

10.7.17 TpHomePage

This data type is identical to TpString. It is the web address of a generic “person”.

10.7.18 TpPersonProperties

This data type is of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that can be associated with a generic “person”.

10.7.19 TpPerson

This data type is a Sequence of Data Elements which describes a generic “person”: e.g. a billing contact, a service requestor. It is a structured data type which consists of:

Sequence Element

Name
Sequence Element

Type

PersonName
TpPersonName

PostalAddress
TpPostalAddress

TelephoneNumber
TpTelephoneNumber

Email
TpEmail

HomePage
TpHomePage

PersonProperties
TpPersonProperties

10.7.20 TpServiceStartDate

This is of type TpDateAndTime. It identifies the contractual start date and time for the use of an OSA service by an enterprise or an enterprise Subscription Assignment Group (SAG).

10.7.21 TpServiceEndDate

This is of type TpDateAndTime. It identifies the contractual end date and time for the use of an OSA service by an enterprise or an enterprise Subscription Assignment Group (SAG).

10.7.22 TpServiceRequestor

This is of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise operator.

10.7.23 TpBillingContact

This is of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise’s use of an OSA service.

10.7.24 TpServiceSubscriptionProperties

This is of type TpServicePropertyList. It specifies a subset of all available service properties and service property values that apply to an enterprise’s use of an OSA service.

10.7.25 TpServiceContract

This data type is a Sequence of Data Elements which represents a service contract. It is a structured data type which consists of:

Sequence Element

Name
Sequence Element

Type

ServiceContractID
TpServiceContractID

ServiceContractDescription
TpServiceContractDescription

10.7.26 TpServiceContractDescription

This data type is a Sequence of Data Elements which describes a service contract. This contract should conform to a previously negotiated high-level agreement (regarding OSA services, their usage and the price, etc.), if any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element

Name
Sequence Element

Type

ServiceRequestor
TpServiceRequestor

BillingContact
TpBillingContact

ServiceStartDate
TpServiceStartDate

ServiceEndDate
TpServiceEndDate

ServiceTypeName
TpServiceTypeName

ServiceID
TpServiceID

ServiceSubscriptionProperties
TpServiceSubscriptionProperties

10.7.27 TpClientAppProperties

This is of type TpPropertyList. The client application properties is a list of {name,value} pairs, for bilateral agreement between the enterprise operator and the Framework.

10.7.28 TpClientAppDescription

This data type is a Sequence of Data Elements which describes an enterprise client application. It is a structured data type, consisting of a unique “client application ID”, password and a list of “client application properties:

Sequence Element

Name
Sequence Element

Type

ClientAppID
TpClientAppID

ClientAppProperties
TpClientAppProperties

10.7.29 TpSagID

This data type is identical to TpString. It uniquely identifies a Subscription Assignment Group (SAG) of client applications within an enterprise.

10.7.30 TpSagIDList

This data type defines a Numbered List of Data Elements of type TpSagID.

10.7.31 TpSagDescription

This data type is identical to TpString. It describes a SAG: e.g. a list of identifiers of the constituent client applications, the purpose of the “grouping”.

10.7.32 TpSag

This data type is a Sequence of Data Elements which describes a Subscription Assignment Group (SAG) of client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

Sequence Element

Name
Sequence Element

Type

SagID
TpSagID

SagDescription
TpSagDescription

10.7.33 TpServiceProfileID

This data type is identical to TpString. It uniquely identifies the service profile, which further constrains how an enterprise SAG uses an OSA service.

10.7.34 TpServiceProfileIDList

This data type defines a Numbered List of Data Elements of type TpServiceProfileID.

10.7.35 TpServiceProfile

This data type is a Sequence of Data Elements which represents a Service Profile. It is a structured data type which consists of:

Sequence Element

Name
Sequence Element

Type

ServiceProfileID
TpServiceProfileID

ServiceProfileDescription
TpServiceProfileDescription

10.7.36 TpServiceProfileDescription

This data type is a Sequence of Data Elements which describes a Service Profile. A service contract contains one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profile is a restriction of the service contract in order to provide restricted service features to a SAG. It is a structured data type which consists of:

Sequence Element

Name
Sequence Element

Type

ServiceContractID
TpServiceContractID

ServiceStartDate
TpServiceStartDate

ServiceEndDate
TpServiceEndDate

ServiceTypeName
TpServiceTypeName

ServiceSubscriptionProperties
TpServiceSubscriptionProperties

10.7.37 TpSagProfilePair

This data type is a Sequence of Data Elements which describes a pair of aSAG and a Service Profile. It is a structured data type which consists of:

Sequence Element Name
Sequence Element Type

Sag
TpSagID

ServiceProfile
TpServiceProfileID

10.7.38 TpAddSagMembersConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when client applications are added to a SAG - see method addSagMembers(). This happens, when a client application is assigned to a service twice.

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is already assigned to the service. It includes the current service profile. The ConflictGeneratingSagProfilePair describes another SAG, to which the client application should be added, and the corresponding service profile, through which the client application is also connected to this service. This creates a conflict, as there may exist only a single service profile for each service.

The TpAddSagMembersConflict is a structured data type which consists of:

Sequence Element Name
Sequence Element Type

ClientApplication
TpClientAppID

ConflictGeneratingSagProfilePair
TpSagProfilePair

AlreadyAssignedSagProfilePair
TpSagProfilePair

Service
TpServiceID

10.7.39 TpAddSagMembersConflictList

This data type defines a Numbered List of Data Elements of type TpAddSagMembersConflict.

10.7.40 TpAssignSagToServiceProfileConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when a SAG is assigned to a Service Profile - see method assign().

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is already assigned to the service.

The TpAssignSagToServiceProfileConflict is a structured data type which consists of:

Sequence Element Name
Sequence Element Type

ClientApplication
TpClientAppID

AlreadyAssignedSagProfilePair
TpSagProfilePair

Service
TpServiceID

10.7.41 TpAssignSagToServiceProfileConflictList

This data type defines a Numbered List of Data Elements of type TpAssignSagToServiceProfileConflict.

11 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

Name
Description

P_ACCESS_DENIED
The client is not currently authenticated with the framework

P_DUPLICATE_PROPERTY_NAME
A duplicate property name has been received

P_ILLEGAL_SERVICE_ID
Illegal Service ID

P_ILLEGAL_SERVICE_TYPE
Illegal Service Type

P_INVALID_ACCESS_TYPE
The framework does not support the type of access interface requested by the client.

P_INVALID_ACTIVITY_TEST_ID
ID does not correspond to a valid activity test request

P_INVALID_ADDITION_TO_SAG
A client application cannot be added to the SAG because this would imply that the client application has two concurrent service profiles at a particular moment in time for a particular service.

P_INVALID_AGREEMENT_TEXT
Invalid agreement text

P_INVALID_ENCRYPTION_CAPABILITY
Invalid encryption capability

P_INVALID_AUTH_TYPE
Invalid type of authentication mechanism

P_INVALID_CLIENT_APP_ID
Invalid Client Application ID

P_INVALID_DOMAIN_ID
Invalid client ID

P_INVALID_ENT_OP_ID
Invalid Enterprise Operator ID

P_INVALID_PROPERTY
The framework does not recognise the property supplied by the client

P_INVALID_SAG_ID
Invalid Subscription Assignment Group ID

P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT
A SAG cannot be assigned to the service profile because this would imply that a client application has two concurrent service profiles at a particular moment in time for a particular service.

P_INVALID_SERVICE_CONTRACT_ID
Invalid Service Contract ID

P_INVALID_SERVICE_ID
Invalid service ID

P_INVALID_SERVICE_PROFILE_ID
Invalid service profile ID

P_INVALID_SERVICE_TOKEN
The service token has not been issued, or it has expired.

P_INVALID_SERVICE_TYPE
Invalid Service Type

P_INVALID_SIGNATURE
Invalid digital signature

P_INVALID_SIGNING_ALGORITHM
Invalid signing algorithm

P_MISSING_MANDATORY_PROPERTY
Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
No encryption mechanism, which is acceptable to the framework, is supported by the client

P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM
No authentication mechanism, which is acceptable to the framework, is supported by the client

P_NO_ACCEPTABLE_SIGNING_ALGORITHM
No signing algorithm, which is acceptable to the framework, is supported by the client

P_PROPERTY_TYPE_MISMATCH
Property Type Mismatch

P_SERVICE_ACCESS_DENIED
The client application is not allowed to access this service.

P_SERVICE_NOT_ENABLED
The service ID does not correspond to a service that has been enabled

P_SERVICE_TYPE_UNAVAILABLE
The service type is not available according to the Framework.

P_UNKNOWN_SERVICE_ID
Unknown Service ID

P_UNKNOWN_SERVICE_TYPE
Unknown Service Type

Each exception class contains the following structure:

Structure Element Name
Structure Element Type
Structure Element Description

ExtraInformation
TpString
Carries extra information to help identify the source of the exception, e.g. a parameter name

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl, fw_if_app.idl, fw_if_service.idl contained in archive 2919803IDL.ZIP) which accompany the present document.
Annex B (informative):
W3C WSDL Description of Framework

The W3C WSDL representation of this specification is contained in text files (fw_data.wsdl, fw_if_access.wsdl, fw_if_app.wsdl, and fw_if_service.wsdl contained in archive 2919803WSDL.ZIP) which accompanies the present document.

Annex C (informative):
Java API Description of the Framework

The Java API representation of this specification can be obtained from the following URLs:

· JAIN SPA Framework Access Session (http://jcp.org/jsr/detail/24.jsp)

· JAIN SPA Framework to Application (http://jcp.org/jsr/detail/119.jsp)

Each JSR webpage contains a table identifying the relationships between the different versions of the Parlay, ETSI/OSA, 3GPP/OSA and JAIN SPA specifications. In addition, each JAIN SPA specification version indicates to which Parlay, ETSI/OSA and 3GPP/OSA specification versions it corresponds to.

Annex D (informative):
Change history

Change history

Date
TSG #
TSG Doc.
CR
Rev
Subject/Comment
Old
New

Mar 2001
CN_11
NP-010134
047
--
CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
3.2.0
4.0.0

Jun 2001
CN_12
NP-010330
001
--
Corrections to OSA API Rel4
4.0.0
4.0.1

Sep 2001
CN_13
NP-010466
002
--
Changing references to JAIN
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
003
--
Update to the definitions of method svcUnavailableInd
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
004
--
Only one subject per method invocation for fault and load management
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
005
--
Fault management is missing some *Err methods
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
006
--
Method balance on Fault management interfaces
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
007
--
Change "TpString" into "TpOctetSets" in authentication and access
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
008
--
Replacement of register/unregisterLoadController
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
009
--
Redundant Framework Heartbeat Mechanism
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
010
--
Add a releaseInterface() method to IpAccess
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
011
--
Removal of serviceID from queryAppLoadReq()
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
012
--
Addition of listInterfaces() method
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
013
--
Introduction and use of new Service Instance ID
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
014
--
P_UNAUTHORISED_PARAMETER_VALUE thrown if non-accessible serviceID is provided
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
015
--
Introduction of Service Instance Lifecycle Management
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
016
--
Add support for multi-vendorship
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
017
--
Removal of P_SERVICE_ACCESS_TYPE
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
018
--
Confusing meaning of prescribedMethod
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
019
--
A client should only have one instance of a given service
4.1.0
4.2.0

Sep 2001
CN_13
NP-010466
020
--
Some methods on the IpApp interfaces should throw exceptions
4.1.0
4.2.0

Dec 2001
CN_14
NP-010596
021
--
Replace Out Parameters with Return Types
4.2.0
4.3.0

Dec 2001
CN_14
NP-010596
022
--
Correctionto Framework (FW)
4.2.0
4.3.0

Mar 2002
CN_15
NP-020105
023
--
Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
4.3.0
4.4.0

Mar 2002
CN_15
NP-020105
024
--
Replace erroneous mention of P_OSA_ACCESS by the correct value P_OSA_AUTHENTICATION
4.3.0
4.4.0

Mar 2002
CN_15
NP-020105
025
--
Add missing inheritance in service agreement management interfaces
4.3.0
4.4.0

Mar 2002
CN_15
NP-020105
026
--
Include Operation Set as part of General Service Properties
4.3.0
4.4.0

Mar 2002
CN_15
NP-020105
027
--
Improved description of activityTestReq with respect to ServiceInstanceID
4.3.0
4.4.0

Mar 2002
CN_15
NP-020105
028
--
OSA Framework - Generate statistics records on behalf of another entity using genFaultStatsRecordReq
4.3.0
4.4.0

Mar 2002
CN_15
NP-020105
029
--
Update the interface names for alignment between 3GPP and ETSI/Parlay
4.3.0
4.4.0

Jun 2002
CN_16
NP-020179
030
--
Solving the problem in the OSA Framework with method appUnavailableInd() in a scenario with multiple service sessions per access session
4.4.0
4.5.0

Jun 2002
CN_16
NP-020179
031
--
Adding missing mandatory method (authenticationSucceeded) to sequence flow
4.4.0
4.5.0

Jun 2002
CN_16
NP-020186
032
--
Remove redundant data type definition TpServiceSpecString
4.5.0
5.0.0

Jun 2002
CN_16
NP-020181
033
--
Addition of support for Java API technology realisation
4.5.0
5.0.0

Jun 2002
CN_16
NP-020182
035
--
Addition of support for WSDL realisation
4.5.0
5.0.0

Jun 2002
CN_16
NP-020186
036
--
Clarify semantics of service properties of type BOOLEAN_SET
4.5.0
5.0.0

Jun 2002
CN_16
NP-020186
037
--
Addition of version management support to the Framework (29.198-03) in run-time
4.5.0
5.0.0

Jun 2002
CN_16
NP-020186
038
--
Enhancements on subscription management error information
4.5.0
5.0.0

Jun 2002
CN_16
NP-020186
039
--
Delete conflicting description of P_APPLICATION_NOT_ACTIVATED
4.5.0
5.0.0

Jun 2002
CN_16
NP-020186
040
--
Note added for P_SERVICE_INSTANCE Choice Element Name
4.5.0
5.0.0

Jun 2002
CN_16
NP-020186
041
--
Correcting the method descriptions for abortAuthentication and for initiateAuthentication
4.5.0
5.0.0

Jun 2002
CN_16
NP-020186
042
--
Correcting the description of heartbeat failure
4.5.0
5.0.0

Jun 2002
CN_16
NP-020186
043
--
Correcting erroneous FW<->Service instance sequence diagrams
4.5.0
5.0.0

Jun 2002
CN_16
NP-020186
044
--
Correcting the scope of TpFwID, which currently is giving it false limitations
4.5.0
5.0.0

Sep 2002
CN_17
NP-020428
046

Correction to description of TpServicePropertyTypeName
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
047

Remove undefined exception in registerService
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
048

Remove ServiceIDs from IpFwFaultManager.genFaultStatsRecordReq()
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
049

Correct appUnavailableInd and related methods
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
050

Remove unusable exception from IpFaultManager.appActivityTestRes()
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
051

Clarify the sequence of events in signing the service agreement
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
052

Correct use of electronic signatures
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
053

Addition of Sequence Diagrams for terminateAccess
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
054

Add indication what part of service agreement must be signed
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
055

Add text to clarify requirements on support of methods
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
056

Introduce types and modes for generic properties
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
057

Correction on use of NULL in Framework API
5.0.0
5.1.0

Sep 2002
CN_17
NP-020428
058

Add Negotiation of Authentication Mechanism for OSA level Authentication
5.0.0
5.1.0

Sep 2002
CN_17
NP-020395
058

Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
5.0.0
5.1.0

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

3GPP

